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Introduction 
 

Natural products have perpetually occupied a pivotal role 

in human history and advancement by functioning as the 

primary source of medicine and food (Vadakkan et al., 

2018; Kayeen Vadakkan et al., 2018c; Vadakkan et al., 

2019a). It occasionally provided protection, nutrition, 

and therapeutic resources for the human population. To 

date, numerous actions, encompassing both medicinal 

and non-medical aspects, have been investigated. These 

actions include larvicidal, anti-cancer, anti-helminthic, 

and antibacterial properties (Kayeen Vadakkan et al., 

2018a; Vadakkan, 2019; Vadakkan et al., 2019c, 2019b). 

In tandem with the heightened importance placed on 

plants, the field of plant research has produced a 

tremendous amount of data. The rapid expansion of 

digital data is a consequence of recent technological and 

hardware developments that enable the analysis of 

biological samples on a nanoscale and macroscopic 

levels. Due to the inability of the human brain to handle 

this vast amount of information, there is a rapidly 

growing need for computer methods to analyse and 

contextualise it. Bioinformatics is the application of 

principles and methodologies derived from the fields of 

engineering, statistics, and computer science to the study 

of biological data (Kayeen Vadakkan et al., 2018b, 

2018d; Vadakkan, 2020; Vadakkan et al., 2021). It finds 

its greatest applicability in the domains of computational 

biology and biological information management.  

 

Bioinformatics is currently being utilised in the field of 

computational biology for a multitude of significant 

objectives that extend beyond the mere analysis of 

genomic sequence data. The aforementioned tasks 

encompass the examination of gene expression and 

variation, the configuration of simulation settings, the 
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In conjunction with bioinformatics and comparable developments in tools, software, and 

visualisation modelling, current developments in plant sciences have propelled the 

scientific community into an active dispute over information. Despite the advent of Omics 

and numerous other remarkable bioinformatics tools, a considerable proportion of 

researchers still require further familiarisation with these instruments. The present 

evaluation centres on the potential implementations of diverse in silico tools and 

technologies in the analysis of plant sciences. Gaining knowledge of these many 

technologies will contribute to an enhanced comprehension of plant characteristics, 

including resistance to pathogens, tolerance to stress, and nutritional enhancement. 

Furthermore, we are collaborating on many challenges and limitations in the field of plant 

sciences that are associated with the bioinformatics methodology. 
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identification and prediction of gene regulatory networks, 

and the analysis and modelling of the structure and 

function of proteins and genes (Suriyakala et al., 2021; 

Vadakkan et al., 2020). 

 

Transcriptomics-Understanding the expressed 

ones 
 

In recent years, transcriptomics has emerged as one of 

the most actively researched topics in the field of 

biology. RNA-Seq is a method that may be used to 

research model organisms as well as non-model species 

because of its high throughput, high sensitivity, and high 

resolution. The sequencing of transcriptomes is another 

method that is crucial for researching the genomes of 

plants, a topic for which there is a paucity of information. 

(Giacomello, 2021; Guo et al., 2021). Because of 

advancements in technology, transcriptomics has been an 

increasingly popular area of research since the late 

1990s. In the early 1990s, researchers made their initial 

attempts to investigate the whole transcriptome. The field 

of transcriptomics has been moulded in many ways by 

the many advances that have been made in technology. 

RNA sequencing, which makes use of high-throughput 

sequencing to capture all sequences, and microarrays, 

which measure a collection of pre-set sequences, are two 

key modern methodologies in the field of study. (Chen et 

al., 2021; Chu et al., 2017; Libault et al., 2017). 

Transcriptomics and genomes are distinguished from one 

another by a number of factors. First, transcriptomic 

analysis may be used to track an organism's overall 

transcriptional activity without a reference genome, 

whereas genome assembly is more difficult and 

expensive in research. Second, the transcriptome changes 

based on the time and location of observation because it 

contains information on additional metabolic pathways in 

addition to reflecting variations in gene expression at 

various temporal and spatial sites (Barrera-Redondo et 

al., 2020; Lowe et al., 2017; Pierlé et al., 2012) 

 

The fundamental objective of doing a transcriptome 

study is to get an understanding of how variations in the 

quantity of transcripts influence the growth and 

development of an organism as well as its reaction to its 

surrounding environment. DNA microarrays have shown 

to be an effective technique for analysing the 

transcriptional profile of genes located all throughout the 

genome. (Malone and Oliver, 2011; Rao et al., 2019). 

Microarray analysis provides the simultaneous evaluation 

of transcript abundance for thousands of genes. There are 

two distinct types of microarrays: arrays with a large 

number of tiny probes produced directly and arrays 

amplified by polymerase chain reaction (Bumgarner, 

2013). Large microarray data sets can be analysed in a 

number of ways using a range of technologies. Examples 

include Gene Traffic, Gene Spring, and the Gene Chip 

Operating Software from Affymetrix (GCOS) (Kumari et 

al., 2007; Ragoussis and Elvidge, 2006). Various tools 

involved in transcriptomic analysis are summarized in 

figure 2. 

 

Transcriptomic sequence assembly 
 

The presence of undesired rRNA reads is a common 

issue in RNA-Seq experiments; consequently, quality 

control is the first and essential step (DeLuca et al., 2012; 

Kumar et al., 2020; Zhou et al., 2018). RNA-Seq data 

can be subjected to a preliminary quality check using the 

FastQC software. RNA-Seq data reports from FastQC 

should be read considerably differently from genomic 

data reports. RNA-Seq data are distinguished by their 

unequal coverage depth and the presence of ribosomal 

RNA sequences. rRNA readings may add new peaks into 

the GC content plot due to their high abundance (de Sena 

Brandine and Smith, 2019; Leggett et al., 2013). After 

verifying that the quality is acceptable, we can move on 

to the sequence alignment step. 

 

While the algorithms and techniques used for DNA 

sequence alignment may also be used to align bacterial 

RNA sequences to the reference genome. Due to the 

presence of splicing events, the mapping of eukaryotic 

RNA is drastically different. Algorithms for splicing 

alignment are needed in order to support lengthy 

insertions and avoid intronic sequences. The most widely 

used software programmes for mapping RNA to DNA 

are BLAT, GMAP, and Splign (Bhagwat et al., 2012; 

Jammali et al., 2019; Kapustin et al., 2008; Wu and 

Watanabe, 2005) 

 

Due to the lack of lengthy complicated repeats and the 

shorter total length of the transcriptome, the de novo 

transcriptome assembly may appear to be an easier task 

to solve than genome assembly (Hina et al., 2020; 

Mahmood et al., 2020; Raghavan et al., 2022). The 

process of assembling the transcriptome is difficult 

because of the vast amount of data that is produced as a 

result of the varying levels of expression, the inclusion of 

isoforms produced by the same gene, and the presence of 

paralogous genes. The majority of current de Bruijn 

graph genome assemblers constitute the foundation for 

modern de novo transcriptome assembly tools like Trans-



Int.J.Curr.Microbiol.App.Sci (2024) 13(01): 94-103 

96 

 

ABySS and SOAPdenovo-Trans (Sessegolo et al., 2019; 

Simpson et al., 2009; Yang et al., 2019; Yang and Smith, 

2013). 

 

Bioinformatics tools for analysing transcriptomic 

data 
 

The initial phase of a conventional transcriptomic 

investigation is data generation. Conventionally, mRNAs 

or whole RNAs are transformed into a cDNA library, 

which is then fragmented and sequenced to produce 

single-end or paired-end short reads (Conesa et al., 2016; 

Wang et al., 2019; Yang and Kim, 2015). Transcriptomic 

data analysis poses difficulties as the number of 

transcripts to rebuild is unknown, As RNA-seq can 

measure expression levels across 5 orders of magnitude, 

any gene can be studied by hundreds of thousands or a 

few reads. Even within gene or transcript constraints, 

library preparation and sequencing bias causes variable 

read coverage (Martin et al., 2013; Wang et al., 2009). 

Regarding transcript assembly, there are two different 

approaches: de novo, which assembles reads solely based 

on sequence overlap; and genome-based, which first 

aligns reads to a reference genome before assembling the 

alignments that overlap. In general, methods based on the 

genome are more accurate. In the absence of a genome 

sequence or in the event of a severely fragmented 

genome, de novo assembly, on the other hand, may be 

employed to create a representative collection of 

transcripts (Geniza and Jaiswal, 2017; Moreno-Santillán 

et al., 2019; Ungaro et al., 2017). 

 

Assembling is more difficult and error-prone, yet it is 

done with the aid of some potent tools. Some very 

commonly used tools are discussed below. TopHat is an 

open-source program for aligning RNA-Seq reads to a 

reference genome beyond utilizing or depending on the 

known splice sites. TopHat aligns RNA-Seqreads taken 

in FASTA or FASTQ format using a reference genome 

(Kim et al., 2013; Trapnell et al., 2009). Initially 

unmapped reads (IUM reads) are the reads that have been 

placed aside because they do not map to the genome. 

Tophat examines the IUM reads for finding reads that 

pan junctions for each splice junction. For consensus-

based building of mapped areas, the MAQ assembly 

module is utilised. TopHat is available for Mac OS X and 

Linux and is written in C++. It utilises the MAQ and 

Bowtie programmes and the SeqAn library (Spies and 

Ciaudo, 2015). Cufflinks Assembler is a different open-

source C++ software that runs on Linux and Mac OS X. 

It could recognise whole novel transcripts and 

deterministically assign reads to isoforms. The Cuffdiff 

and Cuffcompare utilities are also included. Cuff 

comparison, coupled with transfrags (assembled 

transcript fragments), to annotated transcriptomes and 

detection of transfrags that are prevalent across several 

assemblies, are used to verify Cufflinks output 

(Babarinde et al., 2019; Ghosh and Chan, 2016; Trapnell 

et al., 2010). GFOLD, a fold change algorithm, creates 

biologically relevant rankings of differentially expressed 

genes from RNA-Seq data. According to the posterior 

distribution of logfold change, GFOLD provides reliable 

expression statistics when used to single-replica data sets 

(Feng et al., 2012). The edgeR is a statistical method for 

profiling differential gene expression that is based on the 

negative binomial distribution. Although the edgeR was 

designed to work with replicates, it can also be applied to 

data sets without repetitions (Li et al., 2022; Robinson et 

al., 2010; Squair et al., 2021). 

 

Proteomic analysis-Third layer of Omics studies 
 

Plants are continually exposed to a wide array of 

challenges and stresses in the natural environment in 

which they grow, which even pose a risk to the existence 

of spices. Plants have developed a variety of molecular 

programmes during the course of their evolution as a 

direct response to the changing environments that they 

have been subjected to. These programmes provide 

plants the ability to instantly detect and adjust to changes 

in their environment. Proteins are an essential component 

of plant response due to the fact that they play a direct 

part in the generation of novel plant phenotypes and are 

also accountable for the maintenance of cellular 

homeostasis (Hu et al., 2015; Kosová et al., 2018; Liu et 

al., 2019). A protein's function is based not only on its 

molecular structure but also on its subcellular distribution 

and the modifications that occur after it is translated into 

a molecule. Protein function and subcellular distribution 

have a strong link due to the fact that different cell 

components provide different physiological and 

biochemical conditions. Alterations in the subcellular 

localization of proteins are a component of the vast 

majority of cellular biological processes and pathways. In 

light of this, the scientific world has been more interested 

in the study of proteomics. Recently (Cánovas et al., 

2004; Mergner and Kuster, 2022; Patole and 

Bindschedler, 2019; Winck et al., 2021). Proteomics 

identifies and counts all protein types in a cell or tissue, 

investigates post-translational changes and protein 

interactions, and reveals protein molecules' structural and 

functional properties (Deswal et al., 2013; Smythers and 
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Hicks, 2021). As a consequence of the fast development 

of sample pre-treatment and MS-based proteomic 

technology, qualitative proteome analysis is becoming 

more accurate, delivering expanded coverage and 

consistent quality. In the past, qualitative proteome 

analysis was limited to only finding proteins. The 

identification of proteins is no longer the primary 

emphasis; instead, an accurate and reliable quantitative 

analysis is being conducted. Since mass spectrometry 

cannot accomplish quantification on its own, other 

methods have been developed in order to get 

quantification through the use of mass spectrometry. 

These methods may be divided into two categories, 

namely labelling-based quantification and label-free 

quantification, depending on how they determine 

quantities (Angel et al., 2012; Beck and Geiger, 2022; 

Macklin et al., 2020; Rajczewski et al., 2022). 

 

Protein Sequencing and its analysis  
 

The process of finding the sequence of amino acids, 

which may be written as either a single- or a three-letter 

code, is referred to as protein sequencing. The methods 

of protein sequencing may be broken down into one of 

two categories: methods that only produce the N-

terminus sequence of a protein, and methods that 

sequence and identify the entire protein. (Alfaro et al., 

2021; Hunt et al., 1986). Pehr Edman developed a label-

cleavage method for protein sequencing in the 1950s. 

This method is based on a three-step reaction that labels 

and removes the N-terminal residue of a polypeptide. 

After this step, the polypeptide can be recognised as a 

phenylthiohydantoin (PTH – Edman reagent) derivative.  

 

This technique is computer-aided and makes use of a 

protein sequencer in order to sequence peptides ranging 

in length from 5 to 50 amino acids. (Chen et al., 2007; 

Miyashita et al., 2001; Vecchi et al., 2019; Walker, 

1997). Fred Sanger developed a second method for 

conducting peptide end-group analysis. This method 

involves the utilisation of chemical derivatives to label 

the N-terminus of a protein with the yellow dye 

fluorodinitrobenzene, which is then followed by 

hydrolysis and the electrophoretic or chromatographic 

separation of the labelled N-terminal amino acid residue.  

 

The whole amino acid sequence of a protein can be 

determined by doing many rounds of partial protein 

hydrolysis, fractionation, and determining the terminal 

amino acid (Callahan et al., 2020; Rodriques et al., 2019; 

Vitorino et al., 2020). 

Mass spectrometry (MS) methods are now the most 

common ones utilised for the sequencing and 

identification of proteins. The ratio of the masses of gas-

phase ions is something that may be measured with an 

analytical technique called mass spectrometry. MS uses 

an electric current to disassemble peptides into their 

component amino acids, and then it gathers the freed 

amino acids in a mass spectrometer detector so that each 

can be identified according to the mass it possesses 

(Chen et al., 2020; Dupree et al., 2020; Han et al., 2008; 

Standing, 2003). The invention of mass spectrometry 

technology made it feasible to sequence all of the 

proteins that are found in a live creature, which led to the 

birth of the field of study known as proteomics. The 

bottom-up strategy, which involves the study of peptide 

mixtures derived from digested proteins, and the top-

down approach are the two primary types of mass 

spectrometry methods that are used for protein 

sequencing at the present time. The bottom-up method 

starts with proteolytic digestion of proteins to generate 

complex peptide samples, which are then analysed using 

high-throughput liquid chromatography and tandem mass 

spectrometry. On the other hand, the top-down method 

separates intact proteins from complex samples using 

liquid chromatography or 2-D gel electrophoresis. Both 

of these methods are used to study peptides. (de Graaf et 

al., 2022; Hale, 2013; Pandeswari and Sabareesh, 2019; 

Singhal et al., 2015; Tamara et al., 2022). 

 

Bioinformatics tools for Proteomic analysis 
 

Because proteomic data consists of enormous quantity of 

data, it is important to use a broad variety of 

bioinformatic tools in order to analyse the data; some of 

the most common methods are described in the following 

paragraphs. PANTHER, which stands for Protein 

Analysis Through Evolutionary Relationships, is a 

classification system that can analyse sequencing, gene 

expression, and proteomics data. It combines ontology, 

gene function, pathways, and statistical methods 

(Karagiannis et al., 2013; Mi et al., 2013). A library and 

an index are both part of this exhaustive database of gene 

families, which was developed as a resource for the 

categorization of protein families and subfamilies. 

DAVID, which stands for Database for Annotation, 

Visualization, and Integrated Discovery, is yet another 

analytic tool used in this field. DAVID analyses 

enormous gene lists using the principle of gene 

enrichment to find genes that are functionally connected 

to a changed gene or protein (Dennis et al., 2003a, 

2003b; Hou et al., 2022). The Kyoto Encyclopedia of 
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Genes and Genomes (KEGG) is a database resource that 

was developed for the purpose of analysing high-

throughput data. It is separated into four categories, 

including information on systems, genomics, chemicals, 

and health. (Antonov et al., 2008; Kanehisa and Goto, 

2000; Xie et al., 2017). Another software developed for 

analysis, understanding, integration and interpretation of 

biological data is Ingenuity Pathway Analysis (IPA) 

(Dong et al., 2012; Yu et al., 2016). Ingenuity another 

bioinformatic tool is required to analyse the data acquired 

from various platforms such as microarrays, proteomics, 

and metabolomics, among others. IPA makes use of the 

QIAGEN's Ingenuity Knowledge Base, which comprises 

materials that have been taken from articles, reviews, 

biological literature, and other sources and organised into 

Ontology terms. These materials may be found in the 

QIAGEN's Ingenuity Knowledge Base. In addition to 

this, a number of other tools are used, such as STRING 

(Search Tool for the Retrieval of Interacting 

Genes/Proteins) and MINT, an open-source database of 

protein-protein interactions that is used to analyse protein 

networks. Both of these tools are utilised in the 

investigation of protein networks (Calderón-González et 

al., 2016). 

 
Since the field of plant sciences was first established, 

members of the scientific community have been striving 

to get a more in-depth understanding of the subject. At 

the beginning of the research process, it seemed like an 

impossible endeavour; nevertheless, thanks to advances 

in technology, we now have a better grasp of not just 

plants but all other living species as well. The invention 

of genomics, which made it possible to truly decode the 

gene pattern of an organism, was the initial step toward 

acquiring knowledge that led to the first enlightenment. 

Many people's ideas about how to comprehend an 

organism were fundamentally altered as a result of the 

development of transcriptomics and proteomics, which 

were supported by a wide variety of bioinformatics tools 

which was a significant step forward in the discipline. 
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